Skip to content
Ehsan Ahmadi's Personal Docs
Trie
Initializing search
๐ Cheatsheet
๐งช Data Science
๐ง AI
๐จโ๐ป Software
โพ Soft Skill
๐งฎ Mathematics
Ehsan Ahmadi's Personal Docs
๐ Cheatsheet
๐ Cheatsheet
AI
CI/CD
Docker
.Net
Elasticsearch
Git
Go
Linux
MongoDB
Mysql
Nginx
Postgresql
Python
Rabbitmq
Wordpress
๐งช Data Science
๐งช Data Science
Overview
Overview
9 Laws
Projects Flow
๐๏ธ Data
๐๏ธ Data
Cleaning
Cleaning
Cheatsheet
Duplicates
Imbalanced Data
Missing Values
Noisy Data
Outliers
Creation
Creation
Augmentation
Distribution types
Distribution types
Binomial
Long Tail
Normal {Gaussian} {Bell Curve}
Poisson
Uniform
Reduction
Reduction
Overview
Aggregation
Clustering
Compression
Generalization
Importance Sampling {Sampling}
Reservoir Sampling {Sampling}
Simple Random Sampling {Sampling}
Stratified Sampling {Sampling}
Weighted Sampling {Sampling}
๐ Feature
๐ Feature
Creation
Creation
Overview
Bin-Counting {Encoding}
Dummy Coding {Encoding}
Effect Coding {Encoding}
Feature Hashing {Encoding}
Interaction Terms
One-Hot Encoding {Encoding}
Polynomial Expansion
TF-IDF {Encoding}
Transforming Nominal Attributes {Encoding}
Transforming Ordinal Attributes {Encoding}
Reduction
Reduction
Overview
Factor Analysis {Linear}
Hessian Eigenmapping (HLLE) {Manifold}
Isometric Feature Mapping (Isomap) {Manifold}
Linear Discriminant Analysis (LDA) {Linear}
Locally Linear Embedding (LLE) {Manifold}
Multi-dimensional Scaling (MDS) {Manifold}
Principal Component Analysis (PCA) {Linear}
Recursive Feature Elimination (RFE) {Wrapper}
Spectral Embedding (Laplacian Eigenmaps) {Manifold}
T-Distributed Stochastic Neighbor Embedding (T-SNE) {Manifold}
Uniform Manifold Approximation and Projection (UMAP) {Manifold}
Vs (PCA & LDA)
Relation
Relation
Cheatsheet
Overview
ANOVA {Normal} {Continuous vs Categorical}
Chi-Squared {Not Normal} {2 Categorical}
Mutual Information (Information Gain) {Not Normal} {Continuous or Categorical}
Pearson Correlation Coefficient (R) {Normal} {2 Continuous}
Point-Biserial Correlation Coefficient (Rpb) {Normal} {Continuous vs Binary}
Spearman Correlation Coefficient (\(Rs\) or \(\rho\)) {Not Normal} {2 Continuous}
T-Test {Normal} {Continuous vs Categorical}
Variance Threshold {Not Normal} {1 Continuous}
Transformation
Transformation
Binarization
Binning (Quantization)
Log Transformation {Scaling}
Mean Normalization {Scaling}
Normalization (Min-Max) {Scaling}
Power Transformation [Box-Cox] {Scaling}
Robust Scaling {Scaling}
Rounding
Standardization (Z-score) {Scaling}
Vs (Normalization & Standardization)
๐ Charts
๐ Charts
Bar {Categorical}
Confusion Matrix (Error Matrix) {Categorical}
Histogram {Continuous}
Receiver Operator Characteristic (ROC) {Categorical}
Scatter {Continuous}
โ๏ธ Metrics & Evaluation
โ๏ธ Metrics & Evaluation
Accuracy {Balance} {Categorical}
AUC-ROC {Categorical}
F1 {Imbalance} {Categorical}
Mean Absolute Error (MAE) {Continuous}
Mean Squared Error (MSE) {Continuous}
Precision (PPV) {Imbalance} {Categorical}
Coefficient of Determination (\(R^2\)) {Continuous}
Recall (TPR) {Imbalance} {Categorical}
Root Mean Squared Error (RMSE) {Continuous}
Vs (MSE & RMSE)
Vs (Recall & Precision)
๐ง AI
๐ง AI
๐ฆพ Machine Learning
๐ฆพ Machine Learning
Overview
Classification
Classification
Decision Trees {Tree}
K-Nearest Neighbors (KNN)
Logistic Regression
Multinomial Logistic Regression
Naive Bayes
Random Forest {Tree}
Support Vector Machine (SVM)
XGBoost (eXtreme Gradient Boosting) {Tree}
Share (Information Gain Technique) {Tree}
Vs (SVM & Logistic Regression)
Clustering
Clustering
Overview
Anomaly
HDBSCAN
K-Means
VADER {Sentiment Analysis}
Feature extraction
Feature extraction
FastText
Word2Vec
Recommender
Recommender
Collaborative Filtering {Unsup}
Content-Based Filtering {Unsup}
Simple Recommendation {Unsup}
Regression
Regression
Linear Regression (Least Squares) {Sup}
Polynomial Regression {Sup}
Reinforcement
Reinforcement
Reinforcement Learning {Unsup}
Topic modeling
Topic modeling
Overview
BERTopic
LDA
NMF
๐ค Neural Network
๐ค Neural Network
Activation functions
Activation functions
Linear {\(-\infty\) to \(+\infty\)}
ReLU {\(0\) to \(+\infty\)}
Sigmoid {0 to 1}
Softmax {0 to 1}
Softplus {\(0\) to \(+\infty\)}
TanH {-1 to 1}
Threshold {0 or 1}
Architectures
Architectures
Auto-Encoders (AE) {Dimensionality Reduction}
Convolutional (CNN) {Image}
Embedding [Dense] [Sparse] {NLP}
Feed Forward (FFNN)
Generative Adversarial (GAN) {Data Augmentation}
Mamba {NLP}
Mixture of Experts (MoE) {NLP}
Mixture of Recursion (MoR) {NLP}
Parameter-Efficient Ensembling {Tabular}
Recurrent (RNN) {Sequential Data}
RWKV {NLP}
Time Series Models {Correlated Data}
Transformers {NLP}
Cost functions
Cost functions
Overview
Cosine Similarity {Embedding}
Cross-Entropy Loss {Multi-Class Classification}
Distortion {Signal Processing}
Log Loss {Binary Classification}
Multiple Negative Ranking (MNR) (InfoNCE7) (NTXentLoss) {Embedding}
Squared Error Loss {Regression}
Fine tuning
Fine tuning
Overview
Adapters {PEFT}
Contrastive Learning
DPO (Direct Preference Optimization)
Freezing Layers
LoRA [QLoRA] {PEFT}
Masked Language Modeling (MLM)
Online RL [PPO] [GRPO]
Parameter-Efficient Fine-Tuning (PEFT)
RLHF (Reinforcement Learning from Human Feedback)
SetFit
Supervised Fine-Tuning (SFT)
Vs (SFT & DPO & RLHF & Online RL)
Learning rate techniques
Learning rate techniques
Adam Algorithm
ADOPT Algorithm
Batch & Mini-batch
Gradient Descent With Momentum
Hyperparameters Tuning
Learning Rate Decay (lrDecay)
Weight Initialization
Optimization
Optimization
Knowledge Distillation
Pruning
Quantization
Tasks
Tasks
Bi-Encoders (Dense Retrieval)
Cross-Encoders (Reranking)
Fill-Mask
Named Entity Recognition (NER)
Neural Machine Translation
Part of Speech Tagging (POS)
Question Answering
Sentiment Analysis
Text Generation
Text Summarization
Zero-Shot Classification
๐ฃ๏ธ LLM
๐ฃ๏ธ LLM
Chain types
Chain types
Adaptive RAG {RAG}
Agentic RAG {RAG}
Corrective RAG {RAG}
Graph RAG {RAG}
Hybrid RAG {RAG}
HyDE {RAG}
Map-Reduce
Map-Rerank
Multimodal RAG {RAG}
Naive RAG {RAG}
ReAct
Refine
Search Type
Stuffing
Hyperparameters
Hyperparameters
max_token
Presence Penalty
Repetition Penalty
temperature
top_k
top_p
Vs (top_p & temperature)
Jailbreaking
Jailbreaking
Overview
Encoding
Many-Shot
Prompt Injection
Prompting
Prompting
Chain-of-Thought (CoT)
Few-Shot
Generated Knowledge
Meta
Prompt Chaining
Retrieval Augmented Generation (RAG)
Self-Consistency
Step-Back
Structured
Tree-of-Thoughts (ToT)
Zero-Shot
Zero-Shot Chain-of-Thought
Vs (Generated Knowledge & RAG)
Vs (Meta & Few-Shot)
Tokenization
Tokenization
Byte Pair Encoding (BPE) {Strategy}
Byte Tokens {Output}
Character Tokens {Output}
SentencePiece {Strategy}
Subword Tokens {Output}
Word Tokens {Output}
WordPiece {Strategy}
Evaluation
Evaluation
Data Distribution
Orthogonalization
Fitting problems
Fitting problems
Overview
Ensemble methods
Ensemble methods
Overview
Bagging (Bootstrap Aggregating)
Boosting
Gradient Boosting
Stacking
For neural networks
For neural networks
Bigger Neural Network
Dropout Regularization
Early Stopping Regularization
Hyperparameter tuning
Hyperparameter tuning
Training CV
Imbalanced data
Imbalanced data
Cost-Sensitive Learning
Regularization
Regularization
Overview
LASSO (L1)
Ridge (L2)
Vs (LASSO & Ridge)
Splitting data
Splitting data
Holdout Method (Train/Test Split)
K-Fold
Leave-P-Out
Stratified K-Fold
Time Series Cross-Validation
Learning types
Learning types
Overview
Autoregressive Language Modeling {Self-Sup}
Co-Training {Semi-Sup}
Label Propagation {Semi-Sup}
Masked Language Modeling (MLM) {Self-Sup}
๐จโ๐ป Software
๐จโ๐ป Software
๐ Languages
๐ Languages
C#
C#
Architecture
Architecture
Architecture
Memory Management
Namespace
Solution & Project
Asp
Asp
Area
Background Tasks
Controller
Data annotations
DI
Identity
Routing
Structure
View
Class
Class
Class
Delegate & Event
Enumeration
Field
Interface
Method
Property
Record
Structure
Collections
Collections
Overview
Array
ArrayList
Dictionary
Hashset
Hashtable
LINQ
List
Queue
SortedList
Stack
Share (Dictionary & SortedList & Hashtable)
Share (List & Hashset & ArrayList & Stack & Queue)
Ef
Ef
Overview & Installation
CMD
Command & Query
DB Context & DB Set
Model & Fields
Fundamentals
Fundamentals
Async & Await
Character Encoding
Command Line Arguments
Control Statements
Data Types
DateTime
dotnet CLI
Exception Handling
IO
Keywords
Math
Operators
Serialization
String
Go
Go
Passed by Value/Reference
Rust
Rust
Ownership
String
Uml
Uml
Overview
Aggregation (Constructor List)
Association (Constructor Access)
Composition (Constructor Create)
Dependency (Method Access)
Generalization (Extend)
Realization (Implementation)
๐งฉ OOP
๐งฉ OOP
Concepts
Concepts
Abstraction
Encapsulation
Inheritance
Polymorphism
Design patterns
Design patterns
Overview
Adapter (Interface compatibility bridge) {Structural}
Bridge (Decoupled abstraction) {Structural}
Builder (Step-by-step construction) {Creational}
Chain of Responsibility (Request delegation chain) {Behavioral}
Command (Encapsulated request object) {Behavioral}
Composite (Tree-like structure) {Structural}
Decorator (Dynamic object enhancement) {Structural}
Facade (Simplified interface) {Structural}
Factory (Object creation delegation) {Creational}
Flyweight (Shared object reuse) {Structural}
Interpreter (Language parsing engine) {Behavioral}
Iterator (Sequential access) {Behavioral}
Mediator (Centralized communication) {Behavioral}
Memento (State preservation) {Behavioral}
Observer (Event notification system) {Behavioral}
Prototype (Object cloning) {Creational}
Proxy (Controlled access) {Structural}
Singleton (Single instance control) {Creational}
State (State-specific behavior) {Behavioral}
Strategy (Flexible algorithm selection) {Behavioral}
Template Method (Template with hooks) {Behavioral}
Visitor (Element-specific operations) {Behavioral}
Vs (Adapter & Facade)
Vs (Builder & Factory)
Vs (Decorator & Proxy)
Vs (Template Method & Factory Method & Strategy)
Principles
Principles
Overview
Favour Composition Over Inheritance Principle
Hollywood Principle
Least Knowledge Principle
Loosely Coupled Principle
Open Close Principle
Program to Interface Principle
Safety vs Transparency
Separate What Vary Principle
Single Responsibility Principle
๐ข Protocols
๐ข Protocols
gRPC {HTTP2}
Oauth {Authentication}
OAuth2 [OIDC] {Authentication}
OSI Model
Resource Naming {Rule}
RESTful API {HTTP1} {Rule}
SAML {Authentication}
WebRTC {UDP}
WebSocket {TCP}
๐๏ธ Storage {Cache} {DB}
๐๏ธ Storage {Cache} {DB}
overview
overview
DB Types
DB Use Cases
Glossary
Storage Estimation
Storage Selection
Acid transaction
Acid transaction
Atomicity
Consistency
Durability
Isolation
Cache
Cache
Cache Types
System Memory Hierarchy
Data warehouse
Data warehouse
Overview
Data Lake
Data Mart
Data Mesh
Data Pipeline
Data Warehouse
Delta Lake
Star Schema
Nosql
Nosql
Data Locality
LSM-Tree Storeage Structure
Replication
Replication
Overview
Approach: Leaderless Replication
Approach: Multi-Leader Replication
Approach: Single-Leader Replication
Replication Lag Problem
Vs (Single-Leader & Multi-Leader)
Sql
Sql
B-Tree Storeage Structure
Concurrency Control
Row-Based vs Column-Based
SQL Commands
Standard/Virtual View
๐ฅ Data Structures
๐ฅ Data Structures
Overview
Array
AVL Tree (Balanced Binary Search Tree)
B-Tree (Balanced Tree)
Binary Search Tree
Binary Tree
Bloom Filter
Characters
Graph
Hash Table (Hash Map)
Heap
Linked List
Queue
Red-Black Tree (Balanced Binary Search Tree)
Set
Skip List
Stack
Trie
Trie
Table of contents
Description
Vs (Array & Linked List)
๐ท DevOps
๐ท DevOps
AWS Services
DNS
FASS
Github Actions
Linux
Applications
Applications
Kafka
Elasticsearch
Elasticsearch
Glossary
DSL (Query Clauses)
DSL (Query Contexts)
Mapping
System design
System design
Algorithms and patterns
Algorithms and patterns
API Gateway
Bulkhead
CAP Theorem
Circuit Breaker
CQRS
Event-Driven
Outbox
Saga
Service Mesh
Service Registry
Sidecar
Strangler
Architectures
Architectures
Overview
Clean Architecture
DDD
Hexagonal Architecture
Micro Services
Maintainability
Maintainability
Overview
Evolvability
Operability
Simplicity
Reliability
Reliability
Overview
Fault-Tolerant (Resilient)
Scalability
Scalability
Overview
Points
System development
System development
Overview
Overview
Programming Idioms
๐ก๏ธ Security
๐ก๏ธ Security
Bearer Token Authentication
MD5 & SHA
OWASP
PASETO Token
Session Management (Access/Refresh Token)
Symmetric & Asymmetric Encryption
Log and metric
Log and metric
Logging
Metrics
Tracing
Vs (Logging & Tracing & Metrics)
Testing
Testing
API Test
Typing
Typing
Duck Typing
Dynamic & Static Typing
Goose Typing
Static Duck Typing (Structural Subtyping)
Version control
Version control
Code Review Guide
Micro Commit
โพ Soft Skill
โพ Soft Skill
Atomic Habits Book
Google's Keys to Successful Teams
Great Managers Book
Personality Types
๐งฎ Mathematics
๐งฎ Mathematics
Fundamentals
Fundamentals
Functions
Logic
Math Idioms
Sets
Linear algebra
Linear algebra
Matrix
Subset
Subspace
Transformation
Vector
Probability and statistics
Probability and statistics
Central Limit Theorem
Covariance
Degrees of Freedom
Expectation
Pearson Correlation Coefficient (\(R\))
Quantile [Percentile] [Decile] [Quartile]
Standard Deviation
Variance
Vs (Correlation & Covariance)
Vs (Variance & Standard Deviation)
Table of contents
Description
Trie
Description
Tree-like data structure where each node represents a single character of a string.